C. elegans Summer Course and Workshop 2020

Workshop II phiC31-mediated single copy insertion

John Wang Biodiversity Research Center Academia Sinica 8/7/2020

Collaboration with Shih-Peng Chan

Goal: Single copy insertion into *C. elegans*

Goal: Single copy insertion into *C. elegans*

phiC31 integrase and RDF mediate site-specific recombination

Conceptually like Gateway Cloning

Works in mammals, zebrafish, Drosophila, and others

phiC31 integrase and RDF mediate site-specific recombination

Creation of phiC31 integrase system – using MosSCI

Preliminary test of phiC31 integrase system

Injected P0	Transgenic F1	Potential integrants	Successes
26	28	2	2

Screening for Uncs is hard

Improved strain インインインインインインインインイン

Validation / proof of principle

Plus more examples from Ou, Hsueh, and Chan labs

The design of dual color reporter

7PW L4

1. Choose vector and insert your gene Gateway cloning (or RE)

Your own GFP/RFP marker

2. Inject ~20+ PO's with construct + co-injection marker (e.g., myo-3::RFP)

Make sure you get the "gonad flush"

3. Pick WT F1s and construct marker (e.g., *sur-5::GFP*) and co-injection marker (e.g., RFP) Ex array and/or heterozygous insertion

4. Look for segregating ~3/4 and loss of co-injection marker

5. Pick several for homozygous line, confirm loss of Ex array by phenotype

6. Extract DNA

medium quality for short PCR tests high quality for long PCR tests (not sure about very large insert yet, Oxford Nanopore?)

7. Backcross ideally

More details next slide

pBRC_doubleattB_mcherry integration validation イーンーンーンーンーンーンーンーンーーーーー

Summary and miscellaneous final thoughts (I)

- Developed phiC31 system for RMCE (recombination-mediated cassette exchange)
- Should be easier and simpler to get single copy insertions, say for quick tests of rescue
- We think it is easier than Crispr/Cas9 or MosSCI, especially for "longer" insertions (10kb+)
- Larger constructs allows more experiments (long gene, long promoter, or "genome engineering")
- Since recombination, should be more robust than MosSCI and CRISPR/Cas9

- We have used this to invert ~ 8Mb region on LG 4 (attB x attP)
- But have so far failed with a BAC (bacterial artificial chromosome, ~130 kb)

Summary and miscellaneous final thoughts (II)

Issues:

- Only 1 docking site (so far)
- Not as flexible as CRISPR/Cas9
 But remember this uses "repair" to insert DNA
- \circ Plasmid with single attB into a single attP site \rightarrow we get complex insertions
- So we only trust the double attB/double attP approach with plasmids
- When insertion happens is unclear
 - Immediately as original plasmid or after plasmids are part of Ex array?
- phiC31 strain may be unstable and/or slightly deleterious
 - We lost the strain through some type of large-ish deletion (after about 1 year on bench)
- Injecting Unc-119 strains harder than WT

THANKS FOR YOUR ATTENTION

Emily Fang-Jung Yang Tiffany Chang

Ni-Chen Chang Chia-Yi Kao Chih-Chi Lee Yu-Ching Huang Rong-Jan Hsu

Shih-Peng Chan

